
An AI algorithm significantly reduced false positives in lung cancer detection on CT scans, according to international multi-site research.
Key Details
- 1Study published in 'Radiology' evaluated an AI model for lung nodule assessment.
- 2AI was trained on over 16,000 nodules from the National Lung Screening Trial.
- 3Validation used CT datasets from three additional European screening trials.
- 4The algorithm was tested on data from more than 4,000 participants and nearly 8,000 nodules.
- 5Results showed the AI nearly halved the rate of false positives in lung cancer detection.
Why It Matters

Source
Health Imaging
Related News

AI's Expanding Role in Healthcare and Implications for Radiology
A series of thought leaders and institutions weigh in on AI's transformative potential in healthcare, with emphasis on radiology adoption and responsible use.

Most Radiology AI Users Lack Clear Evidence of Financial ROI
Survey finds over 75% of radiology organizations using AI lack clear, quantified ROI data.

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.