
An AI algorithm significantly reduced false positives in lung cancer detection on CT scans, according to international multi-site research.
Key Details
- 1Study published in 'Radiology' evaluated an AI model for lung nodule assessment.
- 2AI was trained on over 16,000 nodules from the National Lung Screening Trial.
- 3Validation used CT datasets from three additional European screening trials.
- 4The algorithm was tested on data from more than 4,000 participants and nearly 8,000 nodules.
- 5Results showed the AI nearly halved the rate of false positives in lung cancer detection.
Why It Matters

Source
Health Imaging
Related News

DL Model Reduces Lung Nodule False Positives in LDCT Screening
A new deep-learning AI algorithm significantly lowered false positives in lung nodule malignancy assessment while maintaining high detection rates.

Multimodal LLMs Show Improved Performance on Japanese Radiology Board Exams
New multimodal large language models (LLMs) like OpenAI o3 and Gemini 2.5 Pro demonstrated significant advancements in answering Japanese radiology board exam questions, particularly with image input.

AI Surpasses Radiologists in Predicting Lung Cancer Treatment Response
AI demonstrates higher accuracy than radiologists in predicting lung cancer treatment response from imaging.