
Researchers developed a dual-modality imaging system that combines high-resolution structural and chemical analysis with AI to improve skin cancer diagnosis.
Key Details
- 1The system merges line-field confocal optical coherence tomography (LC-OCT) with confocal Raman microspectroscopy.
- 2Over 330 nonmelanoma skin cancer samples were examined in a year-long clinical study.
- 3AI models trained on chemical spectra achieved classification accuracy of 0.95 for basal cell carcinoma and 0.92 for both basal and squamous cell carcinoma.
- 4The approach allows targeted, noninvasive analysis of suspicious skin structures at cellular and molecular levels.
Why It Matters

Source
EurekAlert
Related News

AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.

DreamConnect AI Translates and Edits fMRI Brain Activity into Images
Researchers unveil DreamConnect, an AI system that reconstructs and edits visual imagery from fMRI brain data with language prompts.

AI-Powered Optical Imaging Achieves High Accuracy for Colorectal Cancer Detection
A label-free optical imaging technique using autofluorescence lifetime and AI can distinguish colorectal cancer with 85% accuracy.