
Researchers developed a dual-modality imaging system that combines high-resolution structural and chemical analysis with AI to improve skin cancer diagnosis.
Key Details
- 1The system merges line-field confocal optical coherence tomography (LC-OCT) with confocal Raman microspectroscopy.
- 2Over 330 nonmelanoma skin cancer samples were examined in a year-long clinical study.
- 3AI models trained on chemical spectra achieved classification accuracy of 0.95 for basal cell carcinoma and 0.92 for both basal and squamous cell carcinoma.
- 4The approach allows targeted, noninvasive analysis of suspicious skin structures at cellular and molecular levels.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.