
Combining CT-based radiomics and deep learning features with clinical data enhances prediction of hepatocellular carcinoma risk in cirrhosis patients.
Key Details
- 1Study used a multicenter, prospective cohort of 2,411 cirrhosis patients in China (2018–2023).
- 2All patients underwent 3-phase contrast-enhanced abdominal CT at baseline.
- 3AI model extracted radiomics (PyRadiomics) and deep learning (ResNet-18) features from liver and spleen on CT.
- 4The integrated aMAP-CT model significantly outperformed standard clinical models (AUC 0.809–0.869).
- 5Model stratified patients into high- (26.3% incidence) and low-risk (1.7%) groups over three years.
- 6Stepwise application identified 7% of patients at very high risk for HCC (27.2% three-year incidence).
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.

AI Powers Breakthroughs in Optical Metasurface Design for Imaging
A review highlights how AI is revolutionizing the design of optical metasurfaces, advancing compact optics and computational imaging.