
Combining CT-based radiomics and deep learning features with clinical data enhances prediction of hepatocellular carcinoma risk in cirrhosis patients.
Key Details
- 1Study used a multicenter, prospective cohort of 2,411 cirrhosis patients in China (2018–2023).
- 2All patients underwent 3-phase contrast-enhanced abdominal CT at baseline.
- 3AI model extracted radiomics (PyRadiomics) and deep learning (ResNet-18) features from liver and spleen on CT.
- 4The integrated aMAP-CT model significantly outperformed standard clinical models (AUC 0.809–0.869).
- 5Model stratified patients into high- (26.3% incidence) and low-risk (1.7%) groups over three years.
- 6Stepwise application identified 7% of patients at very high risk for HCC (27.2% three-year incidence).
Why It Matters
This study demonstrates how AI-driven analysis of imaging data can meaningfully improve personalized risk stratification in a major oncologic domain, supporting earlier HCC detection and potentially better clinical outcomes for high-risk cirrhosis patients.

Source
EurekAlert
Related News

•EurekAlert
AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

•EurekAlert
Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.

•EurekAlert
AI-Based CT Analysis Predicts Outcomes in Fibrotic Lung Disease
AI analysis of one-year CT changes predicts disease progression and survival in fibrotic interstitial lung disease.