
Researchers have developed an AI-enhanced three-phase CT perfusion protocol that reduces radiation exposure by over 80% while accurately generating perfusion maps for stroke evaluation.
Key Details
- 1Traditional CT perfusion (CTP) uses continuous scanning, resulting in high radiation doses (~5260 mGy·cm) and workflow complexity.
- 2The new protocol samples only three phases and uses a GAN-based deep learning model to generate cerebral blood flow (CBF) and Tmax maps.
- 3The approach reduces patient radiation exposure by more than 80% compared to standard CTP methods.
- 4Internal validation demonstrated high fidelity of AI-generated blood flow maps, even with slight deviations in timing of image acquisition.
- 5The method preserves diagnostic accuracy essential for stroke management and is more robust to patient motion.
Why It Matters

Source
EurekAlert
Related News

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.

BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.