AI Enables Rapid Body Composition Analysis on Routine MRI to Predict Cardiometabolic Risk
An open-source AI tool can quickly and accurately assess body composition from routine MRI, helping identify patients at elevated cardiometabolic risk.
Key Details
- 1Study analyzed 33,539 UK Biobank participants without prior diabetes, MI, or stroke using whole-body MRI.
- 2Open-source AI model estimated subcutaneous/visceral adipose tissue, skeletal muscle volume, and fat fraction in under 3 minutes per scan.
- 3AI-derived visceral fat and skeletal muscle fat fraction were independently associated with incident diabetes and major cardiovascular events over median 4.8 years follow-up.
- 4Associations were adjusted for traditional risk factors, BMI, and waist circumference.
- 5Visceral adipose tissue, but not subcutaneous fat, was a key predictor of future risk, corroborating previous findings.
Why It Matters

Source
EurekAlert
Related News

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.

Einstein College Awarded $18M NIH Grant to Develop AI Tools for Mental Health Crisis Prediction
Albert Einstein College of Medicine received an $18 million NIH grant to create AI-based tools for predicting mental health crises using cognitive monitoring.