AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring

Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.
Key Details
- 1Entropy network hydrogel (PGEH) patch provides skin-like stretch (1643%) and high tensile strength (366 kPa).
- 2Reusable skin adhesion (104 kPa) is temperature-activated and leaves no residue after >30 cycles.
- 3Sensor captures EEG signals with ultra-low impedance (310 Ω) and 25.2 dB SNR for up to 48 hours, outperforming traditional Ag/AgCl electrodes.
- 4Integrated with EEGNet, achieves 91.38% accuracy in distinguishing attention states via real-time cognitive feedback.
- 5Capacitive sensor in patch offers 1.25 kPa sensitivity and rapid response (30 ms) over 20,000 cycles, supporting multi-signal monitoring.
- 6Potential applications include clinical-grade EEG, ECG/EMG, neurofeedback, and secure neurocommunication.
Why It Matters

Source
EurekAlert
Related News

AI Accurately Predicts Lymph Node Extension in HPV-related Throat Cancer via CT
An AI pipeline automates lymph node segmentation and extranodal extension prediction from CT in HPV-positive oropharyngeal cancer, correlating with patient outcomes.

Study Finds Doctors, Nurses Outperform AI for Emergency Triage
Clinical staff outperform ChatGPT AI at emergency department triage, but AI shows promise as a support tool for urgent cases.

AI-Enhanced CT Model Improves HCC Risk Prediction in Cirrhosis
Combining CT-based radiomics and deep learning features with clinical data enhances prediction of hepatocellular carcinoma risk in cirrhosis patients.