Back to all news
AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring

Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.
Key Details
- 1Entropy network hydrogel (PGEH) patch provides skin-like stretch (1643%) and high tensile strength (366 kPa).
- 2Reusable skin adhesion (104 kPa) is temperature-activated and leaves no residue after >30 cycles.
- 3Sensor captures EEG signals with ultra-low impedance (310 Ω) and 25.2 dB SNR for up to 48 hours, outperforming traditional Ag/AgCl electrodes.
- 4Integrated with EEGNet, achieves 91.38% accuracy in distinguishing attention states via real-time cognitive feedback.
- 5Capacitive sensor in patch offers 1.25 kPa sensitivity and rapid response (30 ms) over 20,000 cycles, supporting multi-signal monitoring.
- 6Potential applications include clinical-grade EEG, ECG/EMG, neurofeedback, and secure neurocommunication.
Why It Matters
This innovation merges biocompatible, long-wearable EEG electrodes with real-time machine learning, offering significant advances in non-invasive neuroimaging, cognitive assessment, and potential diagnostic applications for neurology and radiology-related disciplines.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.