A deep learning model using echocardiography accurately detects cardiac amyloidosis, outperforming traditional methods.
Key Details
- 1AI model trained on echocardiography video clips from 2,612 patients across multiple sites and ethnic groups.
- 2External validation performed on 18 global sites; included 597 amyloidosis cases and 2,122 controls.
- 3Achieved AUROC of 0.93 (after excluding 13% uncertain predictions), sensitivity of 85%, specificity of 93%.
- 4Performance was consistent across amyloidosis subtypes and various subgroups.
- 5The AI model outperformed transthyretin cardiac amyloidosis (TTR-CA) score (AUROC = 0.73) and wall thickness scoring (AUROC = 0.8).
- 6Ultromics employees contributed and funded the study.
Why It Matters

Source
AuntMinnie
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.