A deep learning model using echocardiography accurately detects cardiac amyloidosis, outperforming traditional methods.
Key Details
- 1AI model trained on echocardiography video clips from 2,612 patients across multiple sites and ethnic groups.
- 2External validation performed on 18 global sites; included 597 amyloidosis cases and 2,122 controls.
- 3Achieved AUROC of 0.93 (after excluding 13% uncertain predictions), sensitivity of 85%, specificity of 93%.
- 4Performance was consistent across amyloidosis subtypes and various subgroups.
- 5The AI model outperformed transthyretin cardiac amyloidosis (TTR-CA) score (AUROC = 0.73) and wall thickness scoring (AUROC = 0.8).
- 6Ultromics employees contributed and funded the study.
Why It Matters
This work demonstrates the robust, generalizable performance of AI to enhance echocardiographic detection of cardiac amyloidosis, surpassing current clinical scoring tools and suggesting real-world impact for earlier and more accurate diagnosis in routine practice.

Source
AuntMinnie
Related News

•Radiology Business
Stanford Pilots AI Tool for Explaining Imaging Results to Providers
Stanford Health Care reports primary care providers find value in AI tools generating imaging result explanations.

•AI in Healthcare
Economic Evaluations of AI in Healthcare Face Major Gaps
A Finnish review finds significant deficiencies in how studies evaluate and report the economic impact of healthcare AI.

•AI in Healthcare
Literature Review Highlights Gaps in Economic Evaluation of Healthcare AI
A Finnish review finds significant gaps in economic evaluation reporting of AI technologies in Western healthcare.