AI-powered MRI radiomics significantly improves prediction of treatment response in advanced liver cancer patients.
Key Details
- 1Multicenter study presented at ASCO 2025 focused on advanced hepatocellular carcinoma (HCC).
- 2AI-based radiomics model analyzed MRI data to predict response to atezolizumab and bevacizumab therapy.
- 3Study included 240 patients; training cohort of 161, validation cohort of 79.
- 4Radiomics model achieved AUC of 0.913 (training) and 0.825 (validation); combined with a key MRI feature, AUC increased to 0.951 and 0.835, respectively.
- 5Significant correlation found between radiomic and conventional MRI features for intrahepatic lesions.
Why It Matters
This work demonstrates the power of AI-driven radiomics to personalize cancer treatment planning, improve patient selection for liver cancer therapies, and highlights growing integration of advanced imaging analytics in clinical oncology workflows.

Source
AuntMinnie
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.