AI-powered MRI radiomics significantly improves prediction of treatment response in advanced liver cancer patients.
Key Details
- 1Multicenter study presented at ASCO 2025 focused on advanced hepatocellular carcinoma (HCC).
- 2AI-based radiomics model analyzed MRI data to predict response to atezolizumab and bevacizumab therapy.
- 3Study included 240 patients; training cohort of 161, validation cohort of 79.
- 4Radiomics model achieved AUC of 0.913 (training) and 0.825 (validation); combined with a key MRI feature, AUC increased to 0.951 and 0.835, respectively.
- 5Significant correlation found between radiomic and conventional MRI features for intrahepatic lesions.
Why It Matters

Source
AuntMinnie
Related News

Experts Urge Development of Generalist Radiology AI to Cut Costs and Improve Care
Leading scientists advocate for broader, generalist radiology AI models to overcome limitations of narrow, single-task solutions.

GE HealthCare Acquires icometrix to Bolster MRI Neurology AI
GE HealthCare is acquiring icometrix to expand its AI-powered MRI neuroimaging capabilities and integrate advanced analytics into its global product ecosystem.

General LLMs Show Promise in Detecting Critical Findings in Radiology Reports
Stanford and Mayo Clinic Arizona researchers demonstrated that LLMs like GPT-4 can categorize critical findings in radiology reports using few-shot prompting.