Ultrasound AI's study validates advanced AI for predicting delivery timing using standard ultrasound images.
Key Details
- 1Ultrasound AI, in collaboration with University of Kentucky, published results in The Journal of Maternal-Fetal & Neonatal Medicine.
- 2The AI predicts time to delivery using only standard ultrasound images, not relying on clinical history or other risk factors.
- 3In a large cohort (over 2 million images, thousands of patients), the AI achieved an R² of 0.95 for term and 0.92 for all births.
- 4Continuous retraining improved AI's prediction of preterm births, with R² increasing from 0.48 (V1) to 0.72 (V4).
- 5Technology is scalable, non-invasive, and functions well across all trimesters and diverse patient populations.
Why It Matters
Accurate prediction of delivery timing, especially preterm births, remains a persistent challenge. This AI-driven approach, requiring only routine ultrasound images, could significantly improve pregnancy management and outcomes worldwide, particularly in under-resourced settings.

Source
EurekAlert
Related News

•EurekAlert
MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

•EurekAlert
SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.

•EurekAlert
AI Powers Breakthroughs in Optical Metasurface Design for Imaging
A review highlights how AI is revolutionizing the design of optical metasurfaces, advancing compact optics and computational imaging.