Ultrasound AI's study validates advanced AI for predicting delivery timing using standard ultrasound images.
Key Details
- 1Ultrasound AI, in collaboration with University of Kentucky, published results in The Journal of Maternal-Fetal & Neonatal Medicine.
- 2The AI predicts time to delivery using only standard ultrasound images, not relying on clinical history or other risk factors.
- 3In a large cohort (over 2 million images, thousands of patients), the AI achieved an R² of 0.95 for term and 0.92 for all births.
- 4Continuous retraining improved AI's prediction of preterm births, with R² increasing from 0.48 (V1) to 0.72 (V4).
- 5Technology is scalable, non-invasive, and functions well across all trimesters and diverse patient populations.
Why It Matters
Accurate prediction of delivery timing, especially preterm births, remains a persistent challenge. This AI-driven approach, requiring only routine ultrasound images, could significantly improve pregnancy management and outcomes worldwide, particularly in under-resourced settings.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.