Ultrasound AI's study validates advanced AI for predicting delivery timing using standard ultrasound images.
Key Details
- 1Ultrasound AI, in collaboration with University of Kentucky, published results in The Journal of Maternal-Fetal & Neonatal Medicine.
- 2The AI predicts time to delivery using only standard ultrasound images, not relying on clinical history or other risk factors.
- 3In a large cohort (over 2 million images, thousands of patients), the AI achieved an R² of 0.95 for term and 0.92 for all births.
- 4Continuous retraining improved AI's prediction of preterm births, with R² increasing from 0.48 (V1) to 0.72 (V4).
- 5Technology is scalable, non-invasive, and functions well across all trimesters and diverse patient populations.
Why It Matters
Accurate prediction of delivery timing, especially preterm births, remains a persistent challenge. This AI-driven approach, requiring only routine ultrasound images, could significantly improve pregnancy management and outcomes worldwide, particularly in under-resourced settings.

Source
EurekAlert
Related News

•EurekAlert
AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.

•EurekAlert
DreamConnect AI Translates and Edits fMRI Brain Activity into Images
Researchers unveil DreamConnect, an AI system that reconstructs and edits visual imagery from fMRI brain data with language prompts.

•EurekAlert
AI-Powered Optical Imaging Achieves High Accuracy for Colorectal Cancer Detection
A label-free optical imaging technique using autofluorescence lifetime and AI can distinguish colorectal cancer with 85% accuracy.