Jurors are more likely to find radiologists at fault if AI detects an abnormality they miss, but transparency about AI error rates can mitigate this effect.
Key Details
- 1Study evaluated over 1,300 mock jurors using vignettes of missed brain bleeds or cancer diagnoses.
- 2Jurors sided with plaintiffs 72.9% (brain bleed) and 78.7% (cancer) when AI flagged missed findings, versus 56.3% and 65.2% with no AI.
- 3Disclosure of AI's false omission (1%) or false discovery (50%) rates reduced perceived radiologist liability.
- 4If both radiologist and AI missed abnormality, jurors were less likely to fault the radiologist (50% for brain bleed, 63.5% for cancer).
- 5Providing AI error rates had stronger mitigating effects for brain bleed cases than for cancer.
Why It Matters

Source
AuntMinnie
Related News

Hybrid AI Approach Cuts Mammography Workload by 38%
A Dutch research team demonstrated that a 'hybrid' AI strategy can reduce radiologist workload in mammography screening by nearly 40% without affecting performance.

Habitat AI Model Improves Risk Stratification of Lung Nodules on LDCT
A 'habitat' AI model outperforms standard 2D approaches in stratifying lung adenocarcinoma risk in subsolid nodules on low-dose CT scans.

AI Model Uses Chest CT to Diagnose and Grade COPD Severity
A machine learning model based on chest CT images accurately diagnoses and grades the severity of COPD.