Jurors are more likely to find radiologists at fault if AI detects an abnormality they miss, but transparency about AI error rates can mitigate this effect.
Key Details
- 1Study evaluated over 1,300 mock jurors using vignettes of missed brain bleeds or cancer diagnoses.
- 2Jurors sided with plaintiffs 72.9% (brain bleed) and 78.7% (cancer) when AI flagged missed findings, versus 56.3% and 65.2% with no AI.
- 3Disclosure of AI's false omission (1%) or false discovery (50%) rates reduced perceived radiologist liability.
- 4If both radiologist and AI missed abnormality, jurors were less likely to fault the radiologist (50% for brain bleed, 63.5% for cancer).
- 5Providing AI error rates had stronger mitigating effects for brain bleed cases than for cancer.
Why It Matters

Source
AuntMinnie
Related News

Experts Urge Development of Generalist Radiology AI to Cut Costs and Improve Care
Leading scientists advocate for broader, generalist radiology AI models to overcome limitations of narrow, single-task solutions.

General LLMs Show Promise in Detecting Critical Findings in Radiology Reports
Stanford and Mayo Clinic Arizona researchers demonstrated that LLMs like GPT-4 can categorize critical findings in radiology reports using few-shot prompting.

Experts Outline Framework and Benefits for Generalist Radiology AI
Researchers propose key features and benefits for implementing generalist radiology AI (GRAI) frameworks over narrow AI tools.