
DGIST researchers developed a deep learning model that classifies lung cancer exosomes based on physical properties measured by atomic force microscopy.
Key Details
- 1DGIST team used AFM to measure nanomechanical properties (stiffness, height-to-radius) of exosomes from NSCLC cell lines with different genetic mutations.
- 2AI model (DenseNet-121) classified exosomes by origin, achieving 96% accuracy and AUC of 0.92.
- 3Exosome stiffness reflected KRAS and EGFR mutations in their respective lung cancer cell lines.
- 4The method enables high-precision, label-free, liquid biopsy-based lung cancer diagnosis.
- 5Study published July 8, 2025, in Analytical Chemistry.
Why It Matters

Source
EurekAlert
Related News

Chinese Researchers Unveil Photonic Chip for Ultra-Fast Image Processing
A new photonic chip achieves image processing at 25 million frames per second with high energy efficiency, promising major advances in real-time imaging and AI applications.

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.