Deep learning AI improves interreader agreement in CAD-RADS assessments on coronary CT angiography.
Key Details
- 1Study published in Radiology: Cardiothoracic Imaging (Oct 9).
- 2623 patients (11,214 coronary segments) who underwent CCTA were included.
- 3AI-assisted CAD-RADS readings showed higher agreement: 1 vs. 2 readers (manual: 73.7%, AI-assisted: 81.8%); 1 vs. 3 (manual: 77.9%, AI-assisted: 84.5%).
- 4AI algorithm evaluated lesion, segment, and patient levels for CAD-RADS and classified stenosis grades with visual outputs.
- 5Authors call for further research with larger datasets and diverse settings.
Why It Matters
Standardizing CAD-RADS assessments using AI has the potential to reduce variability and errors in coronary CT reporting, which could improve patient management and facilitate training for less experienced readers.

Source
AuntMinnie
Related News

•HealthExec
New Report Highlights Clinical AI Performance, Sustainability, and Adoption Challenges
A multi-institutional review details key challenges, progress, and sustainability concerns in deploying clinical AI in real-world healthcare settings.

•Cardiovascular Business
FDA Clears AI Platform for Comprehensive Cardiac Risk Assessment on CT
HeartLung Corporation's AI-CVD receives FDA clearance for opportunistic multi-condition screening on routine chest CT scans.

•AuntMinnie
LLM Boosts Terminology Expansion in Radiology Reports Over RadLex
A large language model (LLM) significantly outperforms RadLex in expanding terms for radiology report language standardization.