AI analysis of one-year CT changes predicts disease progression and survival in fibrotic interstitial lung disease.
Key Details
- 1Researchers at National Jewish Health used an AI-based tool to detect subtle increases in lung fibrosis on serial CT scans.
- 2A 5% or more increase in fibrosis score over one year doubled the risk of death or lung transplant for patients.
- 3AI-derived fibrosis changes predicted steeper lung function decline, especially in patients with less severe baseline disease.
- 4The deep learning method, data-driven textural analysis (DTA), provided precise, objective fibrosis quantification.
- 5Results were validated with data from the Pulmonary Fibrosis Foundation Patient Registry, demonstrating generalizability.
- 6Quantitative CT analysis could be used for trial endpoints and real-world risk stratification.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.