AI analysis of one-year CT changes predicts disease progression and survival in fibrotic interstitial lung disease.
Key Details
- 1Researchers at National Jewish Health used an AI-based tool to detect subtle increases in lung fibrosis on serial CT scans.
- 2A 5% or more increase in fibrosis score over one year doubled the risk of death or lung transplant for patients.
- 3AI-derived fibrosis changes predicted steeper lung function decline, especially in patients with less severe baseline disease.
- 4The deep learning method, data-driven textural analysis (DTA), provided precise, objective fibrosis quantification.
- 5Results were validated with data from the Pulmonary Fibrosis Foundation Patient Registry, demonstrating generalizability.
- 6Quantitative CT analysis could be used for trial endpoints and real-world risk stratification.
Why It Matters
This study demonstrates the clinical potential of deep learning-based CT quantification for early risk identification and outcome prediction in fibrotic lung disease. It supports wider use of imaging AI as an objective, reproducible tool for prognosis and treatment decision-making in complex pulmonary disorders.

Source
EurekAlert
Related News

•EurekAlert
AI-Enabled Nanoplatforms Combine Ferroptosis, Immunotherapy, and Imaging for Cancer
A groundbreaking review highlights how advanced nanoplatforms can synergistically integrate ferroptosis, immunotherapy, and multimodal imaging to optimize cancer therapy.

•EurekAlert
AI Repurposes Routine CT Scans for Osteoporosis Detection
AI algorithms can extract bone density data from routine CT scans to identify osteoporosis, enabling opportunistic screening.

•EurekAlert
AI Outperforms Radiologists in Detecting Hidden Airway Objects on Chest CT
Southampton researchers developed an AI that surpassed radiologists in detecting hard-to-see airway obstructions on chest CT scans.