
University of Arizona researchers combined label-free multiphoton microscopy with neural networks to accurately classify pancreatic neuroendocrine neoplasms in tissue samples.
Key Details
- 1Multiphoton microscopy (MPM) was used to image pancreatic neuroendocrine neoplasm (PNEN) samples without labeling.
- 2Researchers trained both traditional machine learning and four convolutional neural networks (CNNs) on these images.
- 3CNNs achieved classification accuracies ranging from 90.8% to 96.4%, outperforming the ML algorithm’s 80.6%.
- 4Analysis showed key features included collagen content and image texture metrics.
- 5The approach is faster than traditional pathology and was validated across samples from multiple biorepositories.
- 6Publication: Biophotonics Discovery, October 2, 2025, DOI: 10.1117/1.BIOS.2.4.045001.
Why It Matters

Source
EurekAlert
Related News

Study Questions Universal Benefit of AI Virtual Staining in Medical Imaging
University of Illinois researchers found AI-based virtual staining sometimes reduces information utility in medical images, especially with high-capacity networks.

Advances in Multimodal Imaging and AI for Radiation-Induced Brain Injury
A state-of-the-art review highlights the use of multimodal imaging and AI to improve diagnosis and management of radiation-induced brain injury (RIBI).

Cellular Mechanisms Behind Retinal Oscillations in Night Blindness
Loss of the TRPM1 ion channel leads to rhythmic retinal signals linked to night blindness and other degenerative eye diseases.