
University of Arizona researchers combined label-free multiphoton microscopy with neural networks to accurately classify pancreatic neuroendocrine neoplasms in tissue samples.
Key Details
- 1Multiphoton microscopy (MPM) was used to image pancreatic neuroendocrine neoplasm (PNEN) samples without labeling.
- 2Researchers trained both traditional machine learning and four convolutional neural networks (CNNs) on these images.
- 3CNNs achieved classification accuracies ranging from 90.8% to 96.4%, outperforming the ML algorithm’s 80.6%.
- 4Analysis showed key features included collagen content and image texture metrics.
- 5The approach is faster than traditional pathology and was validated across samples from multiple biorepositories.
- 6Publication: Biophotonics Discovery, October 2, 2025, DOI: 10.1117/1.BIOS.2.4.045001.
Why It Matters

Source
EurekAlert
Related News

MAGIC AI System Enables High-Throughput Cancer Cell Imaging and Analysis
Researchers developed MAGIC, an AI-based system integrating automated microscopy and genomics to study chromosomal abnormalities linked to cancer.

AI Accelerates Solid Tumor Drug Development and Personalized Oncology
AI is expediting the timeline and personalization of solid tumor drug development using multi-omics, imaging, and advanced computational models.

Biodegradable Wearable Sensor with AI Enables Interference-Free Respiration Monitoring
Researchers developed a biodegradable, interference-resistant smart mask sensor with AI-driven respiratory classification capability.