
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.
Key Details
- 1Research led by Drexel and Purdue Universities used imaging analysis to study 40 MXene materials, 30 of which are newly synthesized.
- 2Atomic order versus disorder in layered carbides depends on the number and composition of metal elements present.
- 3Dynamic secondary ion mass spectrometry (SIMS) was used to examine atomic arrangements layer by layer.
- 4The study establishes principles for predicting and synthesizing both ordered and high-entropy (random) atomic structures in these 2D materials.
- 5AI and computational modeling can now be better trained to design bespoke materials for technological applications.
Why It Matters

Source
EurekAlert
Related News

DreamConnect AI Translates and Edits fMRI Brain Activity into Images
Researchers unveil DreamConnect, an AI system that reconstructs and edits visual imagery from fMRI brain data with language prompts.

AI-Powered Optical Imaging Achieves High Accuracy for Colorectal Cancer Detection
A label-free optical imaging technique using autofluorescence lifetime and AI can distinguish colorectal cancer with 85% accuracy.

Advancements in CRC Screening: Imaging, AI, and Point-of-Care Diagnostics
Recent innovations in colorectal cancer screening include advanced imaging, AI tools, and novel diagnostics to improve early detection and outcomes.