
MUSC researchers used machine learning on fMRI scans to predict which smokers would benefit from repetitive transcranial magnetic stimulation (rTMS) for quitting smoking.
Key Details
- 1MUSC study combines machine learning and fMRI to personalize rTMS for smoking cessation.
- 242 participants took part in an earlier study, split into real vs sham TMS groups.
- 3The salience network's connectivity in the brain, analyzed by AI, correlated best with positive rTMS outcomes.
- 4Machine learning enabled predictions of individual responsiveness to rTMS based on brain network analysis.
- 5Study published in Brain Connectivity; NIH grant support cited.
- 6The research establishes groundwork for precision neuromodulation and larger future trials.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.