A deep learning model can analyze routine chest CTs to predict major adverse cardiac event risk, outperforming traditional methods.
Key Details
- 1Researchers developed a 3D convolutional neural network to assess MACE risk directly from chest CT images.
- 2The AI model leverages 'causal intervention' to improve generalizability across diverse patient populations.
- 3Performance metrics included AUCs of 0.73 (internal test set) and 0.69 (external test set), surpassing existing clinical models.
- 4Traditional risk estimations do not incorporate imaging data and underperform when applied externally.
Why It Matters
Incorporating imaging data with AI could enable more accurate, widely generalizable cardiac risk prediction, improving proactive patient management. Broad deployment of such models in routine chest CTs could significantly expand radiologists' role in population health.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•HealthExec
US Executive Order and HHS Strategy Set AI Policy Directions for Healthcare
The White House executive order and new HHS strategy shift US policy towards unified AI standards and expanded adoption in healthcare.