A deep learning model can analyze routine chest CTs to predict major adverse cardiac event risk, outperforming traditional methods.
Key Details
- 1Researchers developed a 3D convolutional neural network to assess MACE risk directly from chest CT images.
- 2The AI model leverages 'causal intervention' to improve generalizability across diverse patient populations.
- 3Performance metrics included AUCs of 0.73 (internal test set) and 0.69 (external test set), surpassing existing clinical models.
- 4Traditional risk estimations do not incorporate imaging data and underperform when applied externally.
Why It Matters
Incorporating imaging data with AI could enable more accurate, widely generalizable cardiac risk prediction, improving proactive patient management. Broad deployment of such models in routine chest CTs could significantly expand radiologists' role in population health.

Source
AuntMinnie
Related News

•AuntMinnie
AI Advancements and Studies Highlighted in Digital X-Ray Insider
This edition covers AI models for fracture detection, mortality prediction, and more, along with new research using x-ray and DEXA modalities.

•AuntMinnie
AI Model Accurately Detects Pediatric Physeal Fractures on X-Ray
A deep learning model accurately identifies hard-to-detect physeal fractures in children's wrist x-rays.

•AuntMinnie
Adult-Trained Radiology AI Models Struggle in Pediatric Imaging
Adult-trained radiology AI models often underperform when applied to pediatric imaging data, according to a systematic review.