
Memorial Sloan Kettering researchers report advancements in AI governance, biomarker analysis, and language models for improved cancer care.
Key Details
- 1MSK implemented governance covering 26 AI models, two ambient pilots, and 33 nomograms, demonstrating scalable AI oversight.
- 2AI tool EAGLE analyzed over 8,000 lung cancer slides, reducing molecular testing by over 40% while maintaining standards.
- 3A cancer-trained LLM ('Woollie') was built from 40,000+ radiology reports; achieved predictive scores of 97 (MSK) and 88 (UCSF) overall.
- 4Study on 118 nonagenarians showed lung cancer surgery can be safe and effective, with no patients dying within 90 days.
- 5Drug combination shown to induce mutation (MMRd) in colorectal tumors, potentially sensitizing resistant cancers to immunotherapy, but no clinical responses observed yet.
Why It Matters

Source
EurekAlert
Related News

Sybil AI Model Accurately Predicts Lung Cancer Risk in Diverse Urban Populations
A new study validates the Sybil AI model for predicting lung cancer risk using low-dose CT in a predominantly Black cohort at an urban safety-net hospital.

AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.

DreamConnect AI Translates and Edits fMRI Brain Activity into Images
Researchers unveil DreamConnect, an AI system that reconstructs and edits visual imagery from fMRI brain data with language prompts.